

In intensive care you look for more than world-class ventilatory performance. You demand ventilators that deliver reliable data and easy-to-follow user guidance for better clinical decisions and improved patient outcomes, together with low operating costs throughout the working life of your investment.

In short, you need systems that ensure:

- superior performance in complex environments
- improved patient outcomes
- reduced costs of ownership

HAMILTON MEDICAL was born from a passion to improve the life of ventilated patients and the people who care for them. We began in 1983 with a new generation of intelligent microprocessor controlled intensive care ventilators featuring revolutionary new modes and diagnostic tools. Today we maintain this tradition with the world's finest ICU ventilation technologies and a total dedication to Intelligent Ventilation.

Delivering Intelligent Ventilation

The GALILEO is HAMILTON MEDICAL's full-functioned intensive care ventilator for infant, pediatric, and adult patients.

A clinically complete ventilation solution

The GALILEO ventilator family offers a full spectrum of capabilities, including invasive to noninvasive and advanced ventilation modes, plus tube resistance compensation.

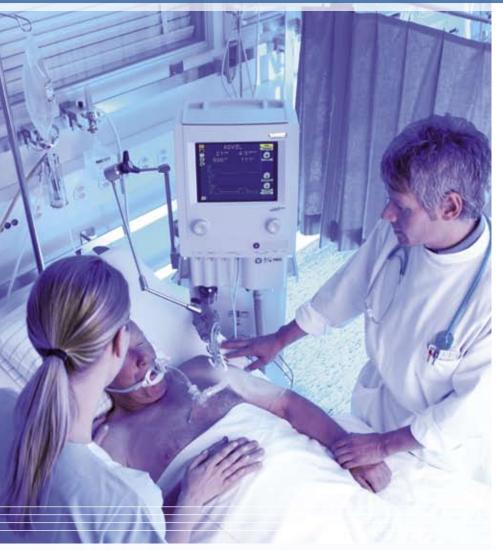
Extensive and configurable monitoring

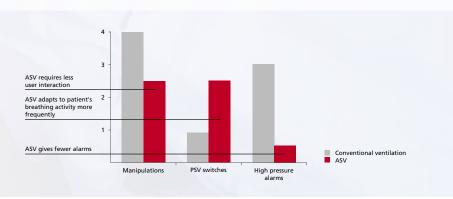
The GALILEO's monitoring package, featuring 26 parameters, loops, waveforms, and trends, gives you the data you want, in the way you want it. You can configure the display with user-selected monitoring parameters.

Tools for intelligent clinical decision making

Intelligent features like adaptive support ventilation (ASV) and the P/V Tool help you determine appropriate ventilator settings, based on the patient's respiratory mechanics.

Intelligent user interface


The GALILEO's intuitive user interface helps ease the required setup and monitoring. Rated highest in an independent user survey, the interface requires little training.

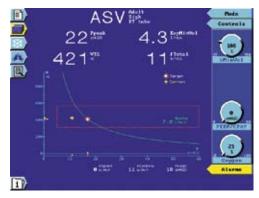


Superior performance in complex environments

In everyday use, ASV requires less user interaction, adapts more frequently to the patient's breathing activity, and signficantly reduces the incidence of alarms compared to conventional modes.*

^{*}Petter AH et al. Anesth Analg 2003; 97:1743-50

In high-pressure situations, the Intelligent Ventilation mode ASV helps your patient – and you – pull through. ASV is an easy-to-use and safe mode of ventilation for the respiratory management of your intubated patients.


Simplifies ventilator management

You just make a few simple settings and ASV does the rest. It calculates and delivers a breath pattern based on your patient's changing respiratory mechanics and spontaneous activity. This breath pattern is optimized for comfort and safety, with the desired minute ventilation delivered at the lowest possible pressure.

Easy to use and extremely safe, ASV automatically adapts to the patient throughout their course of ventilation, typically with no mode changes required.

Clearly shows you the patient-ventilator interaction

You can watch as ASV adjusts ventilation to your patient's needs

The ASV target graphics screen shows:

- Minute volume curve showing target volume
- Safety frame showing limits for lungprotective ventilation
- Actual tidal volume/respiratory frequency combination
- Optimal tidal volume/respiratory frequency combination with which the patient will be ventilated

Improved patient outcomes

FAU Tool 2 manusure

Control 1

Start Star

With its full range of Intelligent Ventilation features, the GALILEO has the tools you need to optimally treat each patient. That translates into fewer days on the ventilator and shorter stays in the ICU.

Advanced modes for expanded treatment options

The GALILEO's DuoPAP and APRV modes encourage spontaneous breathing, even in the most acute phases of the disease process. In these related modes you set two pressure levels for two time periods.

Noninvasive ventilation (NIV) on the GALILEO allows for a logical progression from acute disease to full recovery. It can decrease the need for intubation and promote early extubation. NIV is correlated to reduced mortality in COPD patients, reduced ventilation time in COPD and ARF patients, and reduced complication rates of ventilator-associated pneumonias.

P/V Tool for more intelligent patient assessment

The automated P/V Tool uses an empirical and repeatable method to find best PEEP, based on respiratory mechanics. It also enables sophisticated lung recruitment maneuvers and therapy assessment.

This maneuver records the static pressure/ volume curve quickly and easily at the bedside. It employs an adjustable pressure ramp, in which airway pressure is slowly increased to an upper limit as resultant volume and pressure are recorded.

After the maneuver, the cursor function lets you inspect inflection points so that you can easily visualize the linear portion of the compliance curve.

Intelligent Wentilation means help meeting your financial goals, too.
The GALILEO lets you optimize clinical resources and skills while reducing ownership and management overhead.

One ventilator, all patients

A single device is all you'll need when you ventilate with the GALILEO. Not only does it cover the whole spectrum of patients, but it also offers a full range of ventilation capabilities. As your patient's condition improves and their ventilation needs change, the GALILEO adapts – its invasive and noninvasive modes serve the patient from intubation through extubation.

Optimized patient treatment

The most appropriate treatment – ventilator settings optimized to your patient's respiratory mechanics with the help of ASV and the P/V Tool – means your patient is off the ventilator and on the road to recovery faster. That benefits your patient's health and reduces your costs, too.

Reduced training costs

The GALILEO's intuitive interface simplifies ventilator setup. That translates into easy training and less chance of operator error.

- 1. Access to monitoring, maneuvers, and event log
- 2. Ventilation mode and user-configurable monitored parameters
- 3. Graphics: numeric monitored data, three waveforms, loop, trends, freeze and cursor function
- 4. Auxiliary pressure input
- 5. Pneumatic nebulizer connection
- 6. Proximal flow sensing
- 7. Integrated oxygen monitor
- 8. Oxygenation
- 9. Manual breath
- 10. Monitoring and control knobs (press and turn)
- 11. Most important control settings
- 12. Access to modes, control settings, and alarms

The complete solution

Full spectrum of ventilation capabilities

Including ASV, DuoPAP, APRV, noninvasive ventilation, and conventional modes plus tube resistance compensation (TRC).

Patient-oriented monitoring

HAMILTON MEDICAL's proximal Flow Sensor ensures the most precise flow and pressure measurements for better patient assessment. Patients also benefit from a more sensitive trigger.

Extensive monitoring package

26 parameters, including lung mechanics plus additional weaning parameters such as PTP, P0.1, and respiratory time constants. Waveform, loop, trend displays, ASV target graphics screen, freeze and cursor function. Optional auxiliary pressure monitoring capability, e.g., esophageal pressure. P/V Tool and inspiratory and expiratory pause respiratory maneuvers.

Ergonomic user interface

Two press-and-turn knobs and large color display

Intrahospital transport capability

Internal battery backup plus optional gas cylinder holder for intrahospital transport

Communications interface

RS-232, nurse call, I:E timing

www.hamilton-medical.com

For further information about the GALILEO, please contact:

HAMILTON MEDICAL AG Via Crusch 8 CH-7402 Bonaduz Switzerland

Phone: (+41) 81 660 60 10 Fax: (+41) 81 660 60 20

Visit our websites: www.hamilton-medical.com www.IntelligentVentilation.org

Technical Specifications

Controls	
Ventilation modes	(S)CMV (A/C), SIMV, SPONT, ASV, P-CMV, (P-A/C)
ventuation modes	P-SIMV, APVcmv, APVsimv, DuoPAP, APRV, NIV
Special functions	Manual breath, 100% O ₂ , standby, sigh, apnea
Special functions	backup
Patient types	Adult, pediatric, infant
Patient types	Adult, pediatric, illiant
Rate Mandatory modes	5 to 120 b/min
SIMV, P-SIMV, DuoPAP	1 to 60 b/min
Tidal volume/target tidal	2 to 2000 ml (10 to 2000 ml in volume-controlled
volume*	modes)
PEEP/CPAP and P low	·
(DuoPAP and APRV)	0 to 50 cmH ₂ O
	21 to 100%
Oxygen I:E ratio	1:9 to 4:1
Inspiratory time	0.1 to 10 s (10 to 80% of cycle time)
Pause time Peak flow	0 to 8 s (0 to 70% of cycle time) 1 to 180 l/min
	0.2 to 30 s
T low (APRV)	
T high (DuoPAP and APRV)	0.1 to 30 s
Pressure trigger	0.5 to 10 cmH ₂ O below PEEP/CPAP
Flow trigger	0.5 to 15 l/min
Automatic base flow	4 to 30 l/min, depending on flow trigger setting
Pressure control	5 to 100 cmH ₂ O, added to PEEP/CPAP
Pressure support	0 to 100 cmH ₂ O, added to PEEP/CPAP
P high (DuoPAP and APRV)	0 to 50 cmH ₂ O
Pressure ramp	25 to 200 ms
	5 to 70% of inspiratory peak flow
% minute volume (ASV)	25 to 350%
Flow patterns	Sine, square, 100% decelerating,
	50% decelerating
Monitoring	
Pressure	Peak, mean, minimum, plateau,
	PEEP/CPAP, AutoPEEP
Flow	Inspiratory peak, expiratory peak
Volume	Expiratory tidal volume, expiratory minute
-	volume, leakage volume
Time	Inspiratory, expiratory, I:E ratio, total
	frequency, spontaneous breath frequency
Oxygen	Airway oxygen concentration
Lung function parameters	Inspiratory resistance, expiratory resistance,
	static compliance, inspiratory time constant,
	expiratory time constant, imposed work of
	breathing, pressure time product, rapid shallow
	breathing index, P0.1
Real-time waveforms/loops	Simultaneous display of up to three waveforms
	or one loop based on: volume, flow, airway
	pressure, or auxiliary pressure
Trending	Simultaneous display of up to three parameter
	trends, selected from 26 possible
	monitoring parameters, for 1, 12, or 24 hours

Others	Waveform freeze and cursor function,		
	inspiratory/expiratory hold		
Flow Sensor dead space	2 ml (infant), 9 ml (pediatric/adult)		
	(
Alarms			
Operator-adjustable	Low/high minute volume, low/high pressure,		
,	low/high tidal volume, low/high rate, apnea		
	time, air trapping		
Special alarms	Oxygen concentration, disconnection, loss of		
	PEEP, exhalation obstruction, check settings,		
	Flow Sensor alarms, ASV/APV alarms,		
	power supply, batteries, oxygen/air supplies		
Loudness	50 dB(A) to 85 dB(A)		
Event log	Storage and display of up to 1000 events with		
	time stamp		
Electrical and gas supplies			
Input voltage	100 to 240 V ~ ±10%, 50/60 Hz		
Power consumption	210 VA maximum		
Backup battery time	1 hour typical with fully charged battery		
Oxygen and air supplies	200 to 600 kPa (29 to 86 psi)		
Environment			
Temperature	10 to 40 °C (operating), -10 to 60 °C (storage)		
Humidity	30 to 75% noncondensing (operating)		
	5 to 85% noncondensing (storage)		
Altitude	Up to 3000 m (9843 ft)		
Physical dimensions			
WxDxH	440 x 620 x 1540 mm (17.3 x 24.4 x 60.6 in.)		
	with standard trolley		
	440 x 620 x 1415 mm (17.3 x 24.4 x 55.7 in.)		
	with short trolley		
	382 x 433 x 719 mm (15.0 x 17.0 x 28.3 in.)		
	with shelf mount		
Weight	48 kg (105 lb) with standard trolley,		
	35 kg (77 lb) with shelf mount		
Display	10.7 in., TFT color, backlit		
Main patient outlet	ISO 22M/15F		
Air and oxygen inlets	DISS male, NIST (option)		
Handrian anthro	Nichadinan appearaniasticas interferenciasta P		
Hardware options	Nebulizer; communications interface including		
	RS-232C port, remote nures's call, and I:E ratio		
Ctondorde	IFC 60601 1 IFC 60601 1 2 IFC 60601 2 12		
Standards	IEC 60601-1, IEC 60601-1-2, IEC 60601-2-12,		
	EN 794-1, C22.2 No. 601.1, UL 60601-1		

Note: 1 hPa = 1 mbar \approx 1 cmH $_2$ O

^{*} Tidal volume delivered in pressure-based ventilation modes depends on both the applied inspiratory pressure and lung mechanics. In the GALILEO infant application, this volume may be as low as 2 ml. This is different from GALILEO APV modes, where the smallest tidal volume setting is 10 ml.

GALILEO ventilation modes							
Mode	Description	Туре	Patient age group				
			Adult	Pediatric	Infant		
(S)CMV (A/C)	(Synchronized) controlled mandatory ventilation	Volume	✓	✓			
SIMV	Synchronized intermittent mandatory ventilation	Volume	✓	✓			
P-CMV (P-A/C)	Pressure-controlled mandatory ventilation	Pressure	✓	✓	✓		
P-SIMV	Pressure-controlled synchronized intermittent mandatory ventilation	Pressure	✓	✓	✓		
SPONT	Pressure support ventilation	Pressure	✓	✓	✓		
DuoPAP	Dual positive airway pressure	Pressure	✓	✓	✓		
APRV	Airway pressure release ventilation	Pressure	✓	✓	✓		
NIV	Noninvasive ventilation	Pressure	✓	✓			
APVcmv	Adaptive pressure ventilation + controlled mandatory ventilation	Adaptive	✓	✓	✓		
APVsimv	Adaptive pressure ventilation + synchronized intermittent Adaptive		✓				
	mandatory ventilation						
ASV	Adaptive support ventilation	Adaptive	✓	✓			

GALILEO monitoring parameters

Parameter	Туре	Unit	Description			
Ppeak	Pressure	cmH₂O	Peak airway pressure			
Pmean	Pressure	cmH ₂ O	Mean airway pressure			
Pminimum	Pressure	cmH ₂ O	Minimum airway pressure			
Pplateau	Pressure	cmH ₂ O	Plateau airway pressure			
PEEP/CPAP	Pressure	cmH ₂ O	Positive-end expiratory pressure / continuous positive airway pressure			
Insp Flow	Flow	l/min	Peak inspiratory flow			
Exp Flow	Flow	l/min	Peak expiratory flow			
VTE	Volume	ml	Expiratory tidal volume			
ExpMinVol	Volume	ml	Expiratory minute volume			
VLeak	Volume	ml	Leakage volume at the airway			
I:E	Time		Inspiratory : expiratory ratio			
fTotal	Time	b/min	Total breathing frequency			
FSpont	Time	b/min	Spontaneous breathing frequency			
TI	Time	S	Inspiratory time			
TE	Time	S	Expiratory time			
Oxygen	Oxygen	%	Airway oxygen concentration (FiO ₂)			
Cstat	Lung mechanics	ml/cmH ₂ O	Static compliance			
P01	Lung mechanics	cmH ₂ O	Airway occlusion pressure			
AutoPEEP	Lung mechanics	cmH ₂ O	AutoPEEP or intrinsic PEEP			
PTP	Lung mechanics	cmH ₂ O*s	Pressure time product			
RCexp	Lung mechanics	S	Expiratory time constant			
RCinsp	Lung mechanics	S	Inspiratory time constant			
Rexp	Lung mechanics	cmH ₂ O/l/s	Expiratory flow resistance			
Rinsp	Lung mechanics	cmH ₂ O/l/s	Inspiratory flow resistance			
RSB	Lung mechanics	1/l*min	Rapid shallow breathing index			
WOBimp	Lung mechanics	J/l	Imposed work of breathing			

